语文教学网 加入收藏  -  设为首页
您的位置:语文教学网 > 知识 > 正文
带式运输机传动装置一级圆柱齿轮减速器课程设计
带式运输机传动装置一级圆柱齿轮减速器课程设计
提示:

带式运输机传动装置一级圆柱齿轮减速器课程设计

输送能力 Q=1800t/h
输送长度 L=3005m
输送带宽度 B=1200mm
2.2.2 线路参数
东翼一采区上山主运输大巷共3005米,可简化为如图2.1所示的八段:第一段(1点到2点)平运,长度540米;第二段(2点到3点)下运,水平长度207米,提升高度-27.1米;第三段(3点到4点)平运,水平长度62米;第四段(4点到5点)下运,水平长度518米,提升高度-82米;第五段((5点到6点)平运,长度470米;第六段(6点到7点)上运,水平长度360米,提升高度18.9米;第七段((7点到8点)下运,水平长度400米,提升高度-28.4米:第八段(8点到9点)下运,水平长度435米,提升高度-56米;整机水平长度2992米,运输长度3005米。

图2.1 输送线路参数图
2.2.3 物料特性
输送物料 原煤
物料密度 ρ=900kg/m3
物料安息角 50°
2.2.4 带式输送机工作环境
安装地点:东滩煤矿东翼一采区上山主运输大巷,底板为煤。
环境温度:0~35℃ 。
由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂,是目前国内乃至国外煤矿井下运行工况最为复杂的带式输送机之一:从另一方面,下运带式输送机运行安全可靠性要求高,控制系统复杂,且我国目前对下运带式输送机的理论研究较少,特别是长运距、大运量下运带式输送机系统的工况分析、动态分析、启动、制动技术研究较少,这也是本文选择长运距、大运量下运带式输送机进行研究的目的。
2.3 本课题的研究内容
2.3.1 长运距、大运量下运带式输送机关键技术分析研究
通过下运带式输送机驱动装置的各种组成方案的分析比较,以及常规长运距、大运量下运带式输送机驱动方案中软制动技术和软起动技术的理论研究,提出长运距、大运量下运带式输送机常见驱动方式和制动方法,并分析常见驱动方式和制动方法的优点和存在问题,归纳总结出长运距、大运量下运带式输送机关键驱动方案和制动方式选择的依据。
2.3.2 带式输送机的设计及驱动、制动方案的分析
针对充矿集团东滩煤矿东翼一采区主运输大巷固定下运带式输送机的设计参数及其特殊的工作环境所形成的复杂工况,首先对正常运行时工况进行设计计算,然后再对空载及最大正功和最大负功工况进行计算,再对各种工况的计算结果分析讨论,最后确定合理的张紧方式及张紧力大小,提出合理的张紧装置的选型。
通过各种工况的计算、分析比较,提出合理的驱动装置中,电机、减速器、软起动装置(调速型液力耦合器)及软制动装置各部件的选型方案。










3 长距离、大运量下运带式输送机关键技术的分析
3.1 下运带式输送机的基本组成
带式输送机的组成如图3.1所示[2],主要其有:输送带、驱动装置(电动机、减速机、软起动装置、制动器、联轴器、逆止器)、传动滚筒、改向滚筒、托辊组、拉紧装置、卸料器、机架、漏斗、导料槽、安全保护装置以及电气控制系统等组成。

1-头部漏斗 ;2-机架;3-头部扫清器;4-传动滚筒 5-安全保护装置;6-输送带;7-承载托辊;8-缓冲托辊;9-导料槽;10-改向滚筒;11-拉紧装置 12-尾架;13-空段扫清器;14-回程托辊;15-中间架;16-电动机;17-液力偶合器;18-制动器;19-减速器;20-联轴器
图3.1 带式输送机组成示意图
3.2 驱动方案的确定
带式输送机的驱动部是整机组成的关键部件。驱动部配置是否合适,直接影响带式输送机能否正常运行。长距离、大运量带下运带式输送机对驱动部的要求比通用带式输送机的要求更高,它要求驱动装置能提供平稳、平滑的起动和停车制动力矩,以保证输送带不出现超速、打滑及输送带上的物料不出现滚料和滑料现象。为此要求驱动装置具有一个制动力可随时调整的制动器,以保证起动和停车制动的可控,极大地减小对物料的冲击。同时,在输送机空载起车时还必需保证起动的平稳性。
下运带式输送机受地形条件(如起伏较大)和装载量的影响,其起动工况比较复杂,应考虑如下几种:
(1)负载量小或空载,松闸后带式输送机不能自起动;
(2)负载量较大,松闸后带式输送机能自起动,但自然加速度较小;
(3)负载量大,松闸后带式输送机能自起动,且自然加速度较大。
下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配下运带式输送机在正常运行时,电动机也存在发电工况、电动工况交织运行的问题,所以在设计中,一般较少考虑软起动装置。带式输送机配置软起动装置,可有效降低起、制动过程的动张力,延长输送带及接头的使用寿命,甚至可降低输送带强度,具有很大的经济意义。对此《煤矿安全规程》作了相应规定。
由于下运带式输送机一般情况下电动机工作在发电工况,空载时电动机工作在电动工况。目前常用的下运带式输送机驱动部典型设备配置如表3.1所示。
表3.1 常用下运带式输送机驱动部组合表
组合

设备 1 2 3 4 5
电动机 单机或多机1:1(或2:1)驱动 单机驱动或多机1:1(或2:1)驱动 多电机1:1(或2:1)驱动 多电机1:1(或2:1)驱动 多电机1:1(或2:1)驱动
软起动 无 限矩型液力偶合器 限矩型液力偶合器 调压电气软起动 滑差离合器
减速器 垂直轴或平行轴 垂直轴或平行轴 垂直轴或平行轴 垂直轴或平行轴 可以采用垂直轴或平行轴
制动器 可控盘式制动装置 可控盘式制动装置 液压制动或液力制动+推杆制动 可控制动装置 可控制动器
拉紧装置 重力拉紧或自动拉紧 重力式拉紧装置 重力式拉紧装置 重力拉紧或自动拉紧装置 重力拉紧或自动拉紧装置
适用场合 短距离,中小倾角、小型机 中长距离,大倾角 中长距离,大倾角 长距离,变坡,倾角不大 长距离,变坡,倾角不大
3.3 新型下运带式输送机驱动组合及其控制过程
多数下运带式输送机采用以下几种驱动部组合方式:
(1)电动机—制动装置—减速器—滚筒
(2)电动机—限矩型液力偶合器—制动装置—减速器—滚筒
(3)电动机—限矩型液力偶合器—减速器—可控制动装置—滚筒
(4)电动机—软启动—减速器—液压软制动—盘式制动装置—滚筒
(5)电动机—软启动—减速器—液力软制动—盘式制动装置—滚筒
(6)电动机—软启动—减速器—可控盘式制动装置—滚筒
(7)电动机—软启动—减速器—液粘软制动—滚筒
其中方式(1)~(3)多用于小型(短距离、小倾角、小运量、低带速)下运机上方式;(4)~(7)较适于大倾角下运输送机上。由上述方案可见,下运输送机可控制动装置必不可少;并且目前对下运输送机电动工况的可控起动问题有所忽视。对于长距离、大运量下运带式输送机,可控制动装置必不可少,同时可控起动装置也成为必须。
为此我们提出一种经济实用的长距离、大运量、大功率下运带式输送机的驱动部组合方案。该方案驱动部主要有以下设备组成:电动机、联轴器、调速型液力偶合器、减速机、可控制动装置、驱动滚筒等组成,如图3.2所示[3]。

图3.2 驱动部分组合方案示意图
采用以上驱动组合的下运带式输送机的起动和停车过程如下:
(1)开机准备:先给软起动装置的电气系统和液压系统送电,使主、从动摩擦片闭合,可控制动装置逐渐松闸,如果是重载,按起动要求重车逐渐自动起动带式输送机。
(2)当输送带在装满物料的情况下起动带式输送机时,不能直接对电机送电,否则起动太快,物料容易出现下滑或滚料,所以在这种情况下而是靠煤的下滑力起动输送机,当逐渐松开制动器,输送带带动电机旋转,通过速度传感器检测旋转速度,当速度达到近电机同步运行转速时,PLC控制电机自动送电起动,从而使电机运行于正常的发电状态,这样可以大大减小电机起动时对电气和机械的冲击。而且向下输送的角度越大,起动加速度越大。为了保证起动平稳,通过速度反馈改变制动器施加的制动力,根据不同的制动力,把加速度控制在0.3m/s2之内,保证起动过程的平稳性。
(3)电机直接起动控制,当输送机空载或轻载,逐渐松开制动器时,输送机不能自动起动,这时根据测速装置检测输送机处于零速状态或起车太慢时,需要采用调速型液力偶合器来可控起动带式输送机,此时的可控起动过程完全同上运带式输送机的起动过程。
(4)正常运行时,调速型液力偶合器开度最大,传动效率达到最大。
(5)当多电机驱动时,出现某台电机超载,需要功率平衡时,根据电机的电流反馈来进行调速型液力偶合器的输入与输出速度调节(具体详见电气部分),来进行多电机间的功率平衡调节。一般只要带式输送机系统设计合理,都能保证系统的多机功率平衡。
(6)停车时,按预定的减速度要求进行闭环改变可控制动系统的制动力矩,使带式输送机按预定的减速度减速,实现可控停车。
(7)当输送机在带载停车时,不能直接切断电机,否则容易出现飞车现象,造成严重事故。为此在停机时,先对输送机施加制动力,当检测到电机旋转速度降到其同步速度时,再对电机断电,这样在施加制动力降速时,可以充分利用电机的制动力,使停车更平稳。当输送机的速度降至电机的同步速度时,调速型液力偶合器勺管全部插入,保证电机与输送机系统的同步切除,保证了可控制动系统进一步按要求减速停车。
(8)如果停车时,带式输送机是空载(即主电机处于电动状态),则可以同上运带式输送机的停车过程结合可控制动装置进行联合停车制动。
(9)定车时,可控制动装置抱闸,主电机停机,调速型液力偶合器的液压和电气系统停电。
(10)在起动和停车过程中出现故障,如输送带跑偏、撕带、油温过高等等,调速型液力偶合器和可控制动装置的电气控制系统会自动根据要求可控停机。






4 长距离大运量下运带式输送机设计
充矿集团东滩煤矿东翼一采区主运输大巷固定带式输送机,运距3005米,运量1800吨/小时,提升高度-175.5米,环境温度为0~35 ℃ ,是属于典型的煤矿井下长运距、大运量下运带式输送机。由于带式输送机巷道起伏不平,变坡点较多,致使此带式输送机运行工况相当复杂。此外,该机运行安全可靠性要求高,控制系统复杂,是目前国内乃至国外煤矿井下运行工况较为复杂的带式输送机。本章以该下运带式输送机为例,说明其设计过程。
4.1 带式输送机原始参数
带式输送机是目前井下煤炭的主要输送设备,其设计的自动化先进程度、结构布置方式、使用安全性、可靠性、连续性和高效运行将直接影响矿井生产成本。采用带式输送机输送物料与其它方式相比有着一系列的优越性和高效性,其自动化程度高,代表现代物流技术的发展方向。本课题所要求设计的带式输送机的参数如表4.1所示。
表4.1 输送机原始参数
运量Q 1800t/h
运距L 540 207 62 518 470 360 400 435
垂高 0 -27.1 0 -82 0 18 -28.4 -56
总垂高 -175m
总运距L 3005m
平均倾角β -4°
最大块度 300mm
煤容重γ 0.9t/m3
煤安息角 50°
4.2 带式输送机的设计计算
4.2.1 输送带运行速度的选择
输送带运行速度是输送机设计计算的重要参数,在输送量一定时,适当提高带速,可减少带宽。对水平安装的输送机,可选择较高的带速,输送倾角越大带速应偏低,向上输送时带速可适当高些,向下输送时带速应低些。目前DTII系列带式输送机推荐的带速为1.25~4m/s。对于下运带式输送机,考虑管理难度大,一般确定带速为2~3.5m/s。根据工作面顺槽胶带机的规格(带宽1.2m、带速3.15m/s),工作面的实际生产能力,煤流的不均匀型等因素,同时考虑工作面煤仓无缓冲作用的状况(约3米深),确定东滩煤矿一采区运输大巷固定下运带式输送机带速3.15m/s。
4.2.2 输送带宽度计算
1)按输送能力确定带宽
带式输送机的输送能力与带宽和带速的关系是:
Q=KB2vγc t/h
式中 K—货载断面系数,K值与货载在输送带上的堆积角有关(查标准MT/T467-1996中表三)
B—输送带宽度,m
V—输送机速度,m/s
γ—运送货载的集散容重,t/m3
C—输送机倾角对输送量的影响系数。
当输送量已知时可按下式求得满足生产能力所需的带宽B1:
B1= = =1.2
2)按输送物料的块度确定带宽B2
因为本带式输送机输送原煤,且amax=300mm故有:
B2≥2•amax+200=2×200+200=800mm
实际确定宽度时B=max{1000B1,B2},故可选用1200mm宽度的输送带。
4.2.3 初选输送带
我国目前生产的输送带有以下几种:尼龙分层输送带、塑料输送带、整体带芯阻燃带、钢丝绳芯带等。
在输送带类型确定上应考虑如下因素:
1)为延长输送带使用寿命,减小物料磨损,尽量选用橡胶贴面,其次为橡塑贴面和塑料贴面的输送带;
2)在同等条件下优先选择分层带,其次为整体带芯和钢丝绳芯带;
3)优先选用尼龙、维尼龙帆布层带。因在同样抗拉强度下,上述材料比棉帆布带体轻、带薄、柔软、成槽性好、耐水和耐腐蚀;
4)覆盖胶的厚度主要取决于被运物料的种类和特性,给料冲击的大小、带速与机长,输送石炭石之类的矿石,可以加厚2mm表面橡胶层,以延长使用寿命。
综合该机各类特性参数和技术特性,考虑到输送量较大,运输距离较长,且为固定用输送机,为此初选输送带采用钢丝绳芯输送带,它既有良好的强度,又具有较好的防撕裂性能,是目前井下带式输送机首选带型。可以初选输送带如下:
输送带型号:ST2500输送带
带宽:1200mm
带质量:qd=35.3kg/m2
4.3 输送机布置形式及基本参数的确定
4.3.1 输送带布置形式
对于角度不大的长距离、大运量带式输送机系统,一般可采取双滚筒1:1或2:1的功率配比,这样既可以实现电机的分时起动(煤矿井下变电所容量有限制),同时可以降低输送带的强度。为了降低输送带的强度,本驱动系统采用了头部双滚筒驱动,并把拉紧装置放在紧跟驱动滚筒后部,有利于起动时自动拉紧,同时减少了电力线路铺设长度,保证了控制响应及时。驱动部布置的位置对输送带强度的影响较大,但对于本输送系统,进行分析后得出,驱动部布置在上部效果较理想。同时遵循尽量减少施工工作量、简化设备的原则,降低制作成本,其具体布置示意图如输送机总装图所示。考虑到煤的输送质量较大,本机各类托辊组间距为:
承载托辊间距lt'=1.2m
回程托辊间距lt"=3m
缓冲托辊间距lth=0. 6m
承载托辊直径dt=φ133mm Gt'=34.92Kg
回程托辊直径dt'=φ133mm Gt"=30.63Kg
4.3.2 输送机基本参数的确定
1)输送带质量qd
由上述输送带选型结果可知qd=35.3kg/m2×1.2m=42.36kg/m
2)物料线质量q
当已知设计输送能力和带速时,物料的线质量由下式求得:
q= = =159kg/m
式中 Q—每小时运输量,t/h;
v—运输带运输速度,m/s
3)托辊旋转部分线质量qt′,qt″
由前述托辊组的选择情况可知
qt′= Gt'/ lt'=29.1kg/m
qt″= Gt"/ lt"=10.21 kg/m

机械设计基础课程设计 设计带式运输机传动装置中的一级直齿圆柱齿轮减速器
提示:

机械设计基础课程设计 设计带式运输机传动装置中的一级直齿圆柱齿轮减速器

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φdu[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)










σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。


主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够


(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够


二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

八、减速器箱体、箱盖及附件的设计计算~
1、减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M12
起吊装置
采用箱盖吊耳、箱座吊耳.

放油螺塞
选用外六角油塞及垫片M18×1.5
根据《机械设计基础课程设计》表5.3选择适当型号:
起盖螺钉型号:GB/T5780 M18×30,材料Q235
高速轴轴承盖上的螺钉:GB5783~86 M8X12,材料Q235
低速轴轴承盖上的螺钉:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱体的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱盖壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱盖凸缘厚度b1=1.5z1=1.5×8=12
(4)箱座凸缘厚度b=1.5z=1.5×8=12
(5)箱座底凸缘厚度b2=2.5z=2.5×8=20

(6)地脚螺钉直径df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地脚螺钉数目n=4 (因为a<250)
(8)轴承旁连接螺栓直径d1= 0.75df =0.75×18= 13.5 (取14)
(9)盖与座连接螺栓直径 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)连接螺栓d2的间距L=150-200
(11)轴承端盖螺钉直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)检查孔盖螺钉d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位销直径d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距离C1
(15) Df.d2

(16)凸台高度:根据低速级轴承座外径确定,以便于扳手操作为准。
(17)外箱壁至轴承座端面的距离C1+C2+(5~10)
(18)齿轮顶圆与内箱壁间的距离:>9.6 mm
(19)齿轮端面与内箱壁间的距离:=12 mm
(20)箱盖,箱座肋厚:m1=8 mm,m2=8 mm
(21)轴承端盖外径∶D+(5~5.5)d3

D~轴承外径
(22)轴承旁连接螺栓距离:尽可能靠近,以Md1和Md3 互不干涉为准,一般取S=D2.


九、润滑与密封
1.齿轮的润滑
采用浸油润滑,由于为单级圆柱齿轮减速器,速度ν<12m/s,当m<20 时,浸油深度h约为1个齿高,但不小于10mm,所以浸油高度约为36mm。
2.滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
3.润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用GB443-89全损耗系统用油L-AN15润滑油。
4.密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为GB894.1-86-25轴承盖结构尺寸按用其定位的轴承的外径决定。


十、设计小结
课程设计体会
课程设计都需要刻苦耐劳,努力钻研的精神。对于每一个事物都会有第一次的吧,而没一个第一次似乎都必须经历由感觉困难重重,挫折不断到一步一步克服,可能需要连续几个小时、十几个小时不停的工作进行攻关;最后出成果的瞬间是喜悦、是轻松、是舒了口气!
课程设计过程中出现的问题几乎都是过去所学的知识不牢固,许多计算方法、公式都忘光了,要不断的翻资料、看书,和同学们相互探讨。虽然过程很辛苦,有时还会有放弃的念头,但始终坚持下来,完成了设计,而且学到了,应该是补回了许多以前没学好的知识,同时巩固了这些知识,提高了运用所学知识的能力。


十一、参考资料目录
[1]《机械设计基础课程设计》,高等教育出版社,陈立德主编,2004年7月第2版;
[2] 《机械设计基础》,机械工业出版社 胡家秀主编 2007年7月第1版

谁能给我一份《机械原理》课外大作业插床机构设计
提示:

谁能给我一份《机械原理》课外大作业插床机构设计

《机械原理》课外大作业 插床机构设计
床主要由齿轮机构、导杆机构和凸轮机构等组成,如图所示。电动机经过减速装置(图中只画出齿轮 、 )使曲柄1转动,再通过导杆机构1-2-3-4-5-6,使装由刀具的滑块沿道路,使装由刀具的滑块沿道路 作往复运动,以实现刀具切削运动。为了缩短空程时间,提高生产率,要求刀具具有急回运动。刀具与工作台之间的进给运动,由固结于轴 上的凸轮驱动摆动从动杆 和其他有关机构(图1中未画出)来完成的。
1.导杆机构的设计及运动分析
已知 行程速度变化系数 ,滑块5的冲程 ,中心距 ,比值 ,各构件重心 的位置,曲柄每分钟转速 。
要求 设计导杆机构,作机构两个位置的速度多边形和加速度多边形,作滑块的运动线图,以上内容画在1号图纸上(参考图例1),整理说明书。
设计步骤
资料文件预览共1文件夹,1个文件,文件总大小:239.00KB,压缩后大小:54.17KB
《机械原理》课外大作业 插床机构设计机械原理.doc [239.00KB]
你看这个怎么样
具体的课件在学海网http://www.xuehai.net/docs/205180.html