语文教学网 加入收藏  -  设为首页
您的位置:语文教学网 > 故事 > 正文
有限元方法的基本原理是什么?
有限元方法的基本原理是什么?
提示:

有限元方法的基本原理是什么?

有限元方法的基本原理:将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表示。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 扩展资料: 有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。 每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。 有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

有限元法属于什么方法
提示:

有限元法属于什么方法

您好,很高兴为您解答!有限元法属于什么方法是有限元法(finite element method)是一种高效能、常用的数值计算方法。【摘要】
有限元法属于什么方法【提问】
您好,很高兴为您解答!有限元法属于什么方法是有限元法(finite element method)是一种高效能、常用的数值计算方法。【回答】
有限元法是数值分析法中的一种,是一套求wei分方程的系统化数值计算方法,是解决力学问题比较有效的数值计算方法,是将数值计算转换为矩阵计算,有利于计算机运算。数值分析法就是构造一个比较简单的函数关系,来求解方程的近似值。【回答】
属于那个方法【提问】
不是让你简答,是选择题【提问】
亲您没给我选项呀【回答】
A弹性B集总参数法C边界元法【提问】
c【回答】
亲还可以提问吗?【提问】
亲可以的哦 您可以购买一个比较划算的套餐【回答】
自由式平台()的扛风浪倾覆能力就是整体抗倾稳性【提问】
需要挂号里答案【提问】
建议您来一个无限轮7天套餐更划算【回答】

有限单元法基本原理和数值方法的前言
提示:

有限单元法基本原理和数值方法的前言

第2版前言 改写《有限单元法基本原理和数值方法》(清华大学出版社,1988年),出版它的第2版基于两方面的考虑:自该书1985年定稿以来,有限单元法的理论,特别是它的数值方法以及在工程实际中的应用有了很多新的进展;应用该书于本科生及研究生教学的实践中积累了新的经验、并认识到进一步改进的必要。和第1版相比较,第2版主要有如下变动: 1. 为体现循序渐进的原则,将全书分为两篇。第一篇为基本部分,第二篇为专题部分。和第1版不同的是,将原第1章的约束变分原理和弹性力学广义变分原理部分加以适当的扩充作为有限单元法的进一步理论基础放在第二篇的开始--第8章。原第2章杆件系统有限单元法..

有限单元法基本原理和数值方法的目录
提示:

有限单元法基本原理和数值方法的目录

第1章 预备知识1.1 引言1.2 微分方程的等效积分形式和加权余量法1.3 变分原理和里兹方法1.4 弹性力学的基本方程和变分原理1.5 小结习题参考文献第2章 弹性力学问题有限单元法的一般原理和表达格式2.1 引言2.2 平面问题3结点三角形单元的有限元格式2.3 广义坐标有限单元法的一般格式2.4 有限单元解的性质和收敛性2.5 矩形单元和高精度三角形单元2.6 轴对称问题的有限元格式2.7 空间问题有限元2.8 小结习题第3章 单元和插值函数的构造3.1 引言3.2 一维单元3.3 二维单元3.4 三维单元3.5 阶谱单元3.6 小结习题第4章 等参单元和数值积分4.1 引言4.2 等参变换的概念和单元矩阵的变换4.3 等参变换的条件和等参单元的收敛性4.4 等参元用于分析弹性力学问题的一般格式4.5 数值积分方法4.6 等参元计算中数值积分阶次的选择4.7 小结习题参考文献第5章 有限单元法应用中的若干实际考虑5.1 引言5.2 应力计算结果的性质与处理5.3 子结构法5.4 结构对称性和周期性的利用5.5 非协调元和分片试验5.6 小结习题参考文献第6章 线性方程组的解法6.1 引言6.2 系数矩阵在计算机中的存储方法6.3 高斯消去法6.4 三角分解法6.5 追赶法6.6 分块解法6.7 波前法6.8 雅可比迭代法和高斯-赛德尔迭代法6.9 超松弛迭代法6.10 小结习题第7章 有限单元法程序的结构和特点--典型有限远程序介绍7.1 引言7.2 有限元分析本体程序7.3 网格生成技术7.4 等值线的绘制7.5 小结 第8章 有限单元法的进一步基础--广义变分8.1 引言8.2 约束变分原理8.3 弹性力学广义变分原理8.4 弹性力学修正变分原理8.5 小结习题第9章 杆件结构力学问题的有限单元法9.1 结构有限单元概论9.2 等截面直植-梁单元……第10章 平板弯曲问题的有限单元法第11章 轴对称壳体问题的有限单元法第12章 一般壳体问题的有限元法第13章 热传导问题的有限单元法第14章 动力学问题的有限单元法第15章 材料非线性问题的有限单元法第16章 几何非线性问题的有限单元法主要参考书目

有限元方法
提示:

有限元方法

在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。 它通过变分方法,使得误差函数达到最小值并产生稳定解。类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。

有限元方法
提示:

有限元方法

1,有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。 2,有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。 3,自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。

简述有限元法的基本思想
提示:

简述有限元法的基本思想

有限元法的基本思想如下: 1、把变形体看成是有限数目单元体的集合,单元之间只在指定节点处铰接,再无任何关连,通过这些节点传递单元之间的相互作用。如此离散的变形体,即为实际变形体的计算模型。 2、分片近似,即对每一个单元选择一个由相关节点量确定的函数来近似描述其场变量(如速度或位移)并依据一定的原理建立各物理量之间的关系式。 3、将各个单元所建立的关系式加以集成,得到一个与有限个节点相关的总体方程。解此总体方程,即可求得有限个节点的未知量(一般为速度或位移),进而求得整个问题的近似解,如应力应变、应变速率等。 所以有限元法的实质,就是将具有无限个自由度的连续体,简化成只有有限个自由度的单元集合体,并用一个较简单问题的解去逼近复杂问题的解。 原理及优缺点: 1、原理。 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 2、优点。 有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 3、缺点。 有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。 尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。

什么是有限元法,它的基本概念和思想是什么
提示:

什么是有限元法,它的基本概念和思想是什么

  有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。
  概念:
  将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。
  思想:
  有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学平面问题,给出了用三角形单元求得平面应力问题的正确答案。1960年,Clough进一步处理了平面弹性问题,并第一次提出了"有限单元法",使人们认识到它的功效。